SPECIALIST MATHEMATICS

Units 3 & 4 – Written examination 1

Reading Time: 15 minutes Writing Time: 1 hour

QUESTION AND ANSWER BOOK

Structure of book

	Structure of Book				
Ī	Number of	Number of questions	Number of		
	questions	to be answered	marks		
	9	9	40		

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, and rulers.
- Students are NOT permitted to bring into the examination room: notes of any kind, a calculator, blank sheets of paper and/or white out liquid/tape.

Materials supplied

- Question and answer book of 11 pages.
- Working space is provided throughout the book.

Instructions

- Print your name in the space provided on the top of this page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other electronic devices into the examination room.

This page is blank

Instructions

Answer all questions in the spaces provided.

A decimal approximation will not be accepted if an **exact** answer is required to a question. In questions where more than one mark is available, appropriate working must be shown. Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

Take the acceleration due to gravity to have magnitude g m/s², where g = 9.8.

Question 1

A 20 kg child is sitting on a swing of length 2 m which is pulled to one side 0.5 m by a force of F newtons. Let T newtons be the magnitude of the force in the rope of the swing. The situation is shown in the diagram below.

a. Draw a diagram showing all the forces acting on the child on the swing.

1 mark

Question 1- continued TURN OVER

b.	Calculate the value of the force F, giving your answer in the form $\frac{ag\sqrt{b}}{c}$ where a, b and c			
	are positive integers.			
	-			
	3 marks			

Question 2

Solve the differential equation	$\frac{dy}{dx} = \frac{e^{2x}}{e^{4x} + 3}$	given that $y = 0$ when $x = 0$.

5 marks

Question 2- continued TURN OVER

Question 3

a.	Express $-2-2\sqrt{3}i$ in polar form.			
b.	Solve the quadratic equation $(z-2+i)^2 = -2-2\sqrt{3}i$ expressing your answer in exact			
	Cartesian form.			
0	3 marks			
	estion 4 nsider the relation $x^2 + 4xy + 2y = -11$.			
	Find an expression for $\frac{dy}{dx}$ in terms of x and y.			
	2 marks			
b.	Hence find the exact value of $\frac{dy}{dx}$ when $x = 1$.			

Question 5

The position vector of a moving particle is given by $r(t) = (t+3)i + \frac{4}{t^2}j$ for $1 \le t \le 3$.

a. Find the Cartesian equation of the path followed by the particle.

2 marks

b. Sketch the path of the particle on the axes provided.

2 marks

TURN OVER

Question 6

a. Sketch the graph with equation $y = \frac{8}{(4-x)(x+2)}$, clearly indicating the location of the turning point, any asymptotes and intercepts with the axes.

3 marks

b. Find the exact area bounded by $y = \frac{8}{(4-x)(x+2)}$, the x axis and the lines x = 0 and x = 2 in the form $\frac{a}{b}\log_e c$, where a, b and c are positive integers.

4 marks

Question 7

a. Find the solution of the differential equation $\frac{dy}{dx} = \frac{1}{\sqrt{4-x^2}} |x| < 2$ with $y(0) = \frac{\pi}{4}$.

2 marks

b. Sketch the graph of the solution curve of this equation on the axes below, specifying scales on both axes.

2 marks

TURN OVER

Question 8 Use the change of variable $u = \sin 3x$ to evaluate the integral $\int \frac{dx}{\cos(3x)}$. Express your answer in the form $a \log_e f(x) + c$ where a and c are real constants and f(x) is a function of x. Specify explicitly a and f(x).

4 marks

Question 9

The region in the first quadrant enclosed by the coordinate axes, the graph of $y = \cos \frac{x}{4}$ and the line x = a is rotated about the x axis to form a solid of revolution **a.** Express the volume of the solid of revolution as a definite integral.

1 mark **b.** Calculate the volume of the solid of revolution in terms of a.

2	marke
4	marks

c. Find the exact value of a if the volume is $\frac{\pi}{2} \left(\frac{\pi}{3} + 1 \right)$.

1 mark

END OF QUESTION AND ANSWER BOOK